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In this paper, an extremely simple structure solution method termed charge

¯ipping is presented. It works ab initio on high-resolution X-ray diffraction data

in the manner of Fourier recycling. The real-space modi®cation simply changes

the sign of charge density below a threshold, while in reciprocal space the

moduli Fobs are retained resulting in an Fobs map without weighting. The

algorithm is tested using synthetic data for a wide range of structures, the

solution statistics are analysed and the quality of reconstruction is checked.

Finally, mathematical aspects of the algorithm are considered in detail, and these

show that in this chaotic iteration process the solution is a limit cycle and not a

®xed point.

1. Introduction

Ab initio structure solution by X-ray diffraction is a success

story of the last century. Today the practicing crystallographer

can rely on high-quality data obtained on cryocooled crystals

by area detectors and synchrotron radiation. In the structure

solution process, freely available software takes the workload,

a large part of accumulated knowledge is contained in

elaborate algorithms. The forefront is indisputably protein

crystallography where the coordinates of more than a thou-

sand atoms per asymmetric unit can be determined. The ®eld

of ab initio structure solution is mature, one has the impression

that there is no room for big surprises.

Nevertheless, in this paper we present an amazingly simple

structure solution algorithm ± termed charge ¯ipping. This

algorithm was inspired by several methods described in the

literature: phase retrieval in optics (Gerchberg & Saxton,

1972; Fienup, 1982; Millane, 1990), dual space programs SnB

and ShelxD (Miller et al., 1993; Sheldrick, 1998) and recent

work on iterated projections (Marks et al., 1999; Elser, 2003).

All these methods alternate between real and reciprocal space

by the Fourier transform and do part of the job by imposing

constraints on the real-space charge density. In a sense, this is a

return to the era before direct methods but armed with orders

of magnitude more computing power. The charge-¯ipping

algorithm described below is probably less ef®cient than state-

of-the-art programs today. However, it is surprising that it

works at all, even in the small-molecule world. Its extreme

simplicity offers the prospect for exact mathematical formu-

lation, raises hopes for further improvements and may help to

understand the working and limitation of other methods.

2. On the use of data and grid

Throughout this work, we use structure factors F�h� corre-

sponding to real atoms at zero temperature and avoid

normalized structure factors E�h� corresponding to point

atoms. In this way, atomic peaks will be suf®ciently sharp but

the effect of resolution cutoff is less severe.

By ab initio structure solution, we mean that there is no

preliminary chemical or phase information and only a single-

wavelength diffraction data set is used in the process.

Furthermore, anomalous scattering is not exploited, atomic

scattering factors are taken to be strictly real. In this ®rst

presentation, we use synthetic data and focus on what is

feasible given ideal conditions. We assume that the diffraction

data are complete up to a given resolution, it is error free, the

absolute scale and global isotropic temperature factor are

known. None of these conditions are required for the working

of the algorithm. We extensively tested the effect of noise and

missing data and errors in absolute scale and temperature

factor. To keep the main message of the present paper brief,

we only summarize how well the algorithm tolerates imperfect

data. A detailed study would be a sidetrack here and will be

reported elsewhere.

The real-space charge-density and reciprocal-space struc-

ture factors are related by the discrete Fourier transform,

which is a unitary mapping between the two spaces. For

practice this is coded as variants of the high-speed FFT

algorithm. When structure factors are limited by a given

resolution, the charge density can be represented on a grid

without loss of information. If the radius of the resolution

sphere is H � 1=dmin in reciprocal space, then the necessary

real grid spacing is dmin=2. Charge-density samples (pixels) are

often calculated on a ®ner grid so that contour maps look

better. However, this only involves a larger region of unob-

served structure factors in the calculation and does not

provide more information.

The importance of ®nite resolution is best shown with a

plot. We generated the structure factors for a typical organic

structure (example 1 of Table 1). These are the true complex

amplitudes F�h� and not just their moduli Fobs�h�, which are



used as observed data later. The resolution was set to

dmin � 0:8 AÊ , structure factors outside the resolution sphere

were treated as zeros. Then we calculated the real-space

charge density on a 0.4 AÊ grid using the inverse FFT. Fig. 1(a)

shows the sorted charge pixels. The main characteristic is the

small number of large positive values. Most pixels are

concentrated around zero, it is exactly this real-space property

that allows structure solution. Small negative values are

naturally present because all observed and unobserved

structure factors would be needed to generate a truly positive

charge density. Behind the following algorithm, the simple

thought is: positivity should be forced with care, small negative

charge density may help the process of structure solution.

3. The charge flipping algorithm

The structure-factor moduli Fobs�h� are known for

0 < jhj � h � H, these are the observed data used by the

algorithm. Unobserved moduli are treated as zeros

throughout the iteration process, except F�0�, which is

initialized to zero but later allowed to change freely. The

algorithm is initiated by selecting a random phase set f'�h�g
that satis®es Friedel's law '�ÿh� � ÿ'�h�. Structure-factor

amplitudes are created as Fobs exp�i'� and an inverse FFT

gives a real charge density ��r�. This is our starting point in real

space.

Then one cycle of iteration goes from real space through

reciprocal space to real space again according to the following

scheme:

� ÿ!FLIP
g

FFTÿ1

x? ?yFFT

F  ÿ G

�1�

The charge-density modi®cation ��r� ! g�r� starts the current

iteration cycle. It uses a positive threshold � for the charge

pixels. The value of � is a fraction of a typical light-atom peak

and is the only parameter of the algorithm. As the heights of

atomic peaks depend on the grid size, data resolution and

thermal parameter, these factors also affect the choice of �.
Pixels above this value are accepted unchanged on the

assumption that they belong to atomic peaks. Pixels below �
are simply multiplied by ÿ1, which is made plausible later. In

the next step, temporary structure factors G�h� are calculated

by a FFT. Then structure factors F�h� are constructed by

accepting phases and replacing the moduli by Fobs�h�.
F�0� � G�0� is accepted as is without ®xing or limiting its

value, and F�h� for h>H are reset to zero. Finally, the F�h�
amplitudes are inverted to obtain the new approximation of

the charge density ��r�. This unconditional iteration process

can continue without intervention, the traditional R factor or

some other ®gure of merit serves only for monitoring and not

as the objective function of an optimization approach.

Symmetry is an important issue. Following positive experi-

ence (Sheldrick & Gould, 1995; Burla et al., 2000), we handle

all structures in the space group P1 and neglect any symmetry

constraints. Accordingly, nothing ®xes the origin, which is an

advantage, the structure can emerge anywhere. The disad-

vantage is that the charge density of the whole unit cell must

be determined and not just that of the asymmetric unit. It

turned out that the ®rst factor is more important. When we

applied the symmetry constraints of a given structure and thus

forced the origin to a particular pixel of the unit cell, the

success rate of the algorithm became much worse.

The algorithm is local in both spaces, modi®cation of charge

pixels and structure factors occurs only in-place. In real space,

only the charge pixels below �� are modi®ed, which can be

further divided into two parts. Large negative values belowÿ�
are ¯ipped simply to force positivity. More interesting is the

�ÿ�;��� range, which is not negligible, it gives a substantial

contribution to the structure factors. Fig. 1(b) shows the sorted

charge pixels of a typical solution. The �ÿ�;��� range is

roughly linear, which is an approximation of the target charge

density. Flipping this region does not signi®cantly change the

distribution of pixels, but at the same time it does suf®ciently

explore the phase space. In reciprocal space, the modi®cation

of structure factors corresponds to the unweighted Fobs map.

The treatment of the unobserved F�0� is less standard. While

its value equals the total charge and could come from the

chemical composition, we do not make use of it, keeping the

algorithm ab initio in the strict sense. F�0� is initialized to be

zero and is allowed to change freely in the iteration cycles. In

our studies, this approach worked better than ®xing the total

charge. Note that in this simple scheme there is no reciprocal-

space weighting, no tangent formula and no use of probability.

The concepts of atomicity and positivity are there but in a

strange indirect way.
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Figure 1
Charge density of a typical organic structure at 0.8 AÊ resolution. (a)
Target charge density. (b) Solution after convergence. Pixel values are
sorted in ascending order and are normalized to the maximum of the
target. Note that the �ÿ�;��� range within horizontal lines is
approximately linear.
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During prolonged tests of the algorithm, we realized that it

is closely related to the solvent ¯ipping method of Abrahams

& Leslie (Abrahams & Leslie, 1996; Abrahams, 1997) used as

density modi®cation in protein crystallography. However,

there are important differences. Solvent ¯ipping ± as other

methods of density modi®cation ± is used for improving

already existing phases and does not need atomic resolution

data. In contrast, the charge ¯ipping algorithm of this work is

used ab initio and high-resolution data are essential for its

success. Solvent ¯ipping requires the existence of separate

solvent and protein regions. It modi®es only the solvent charge

density as �new � �0 � kflip��ÿ �0�, where �0 is the expected

solvent level and kflip depends on the solvent content. In

contrast, the charge ¯ipping algorithm does not need separate

real-space regions, it is applied everywhere. There is no choice

of �0 or kflip, the modi®cation is always the sign change of

pixels below the threshold parameter �. The low-density

region occupies the space between atoms, which is auto-

matically found and perpetually adjusted by the algorithm.

Although we emphasized the differences of the two algor-

ithms, both are correct in their respective application area and

historically Abrahams & Leslie were the ®rst to ¯ip charge

anywhere.

In the following two sections, we ®rst give several examples

of ab initio structure solution using charge ¯ipping and then

discuss mathematical aspects of the algorithm in detail.

4. Structure solution examples

We tested the charge ¯ipping algorithm on more than 200

structures taken from the Cambridge Structural Database

(Allen, 2002). For this presentation, we selected ten examples

in the simplest centrosymmetric and non-centrosymmetric

space groups each with a considerable number of atoms. The

structures are listed in Table 1.

In all cases, we generated data up to 0.8 AÊ resolution, using

the coordinates and scattering factors of non-hydrogen atoms.

We need the structure-factor moduli Fobs�h� at zero

temperature. For this, we assume that the absolute scale and

the isotropic thermal parameter B are known. In practice,

these come from Wilson's plot. The knowledge of the absolute

scale is not a serious issue, it is simply related to the proper

choice of the � parameter. With trial and error, we can quickly

®nd its realistic range and ®ne tuning is needed only for faster

convergence. In our examples, 10±20% accuracy of � is suf®-

cient. Correcting for the thermal parameter requires more

consideration. Thermal vibration smears out the atomic

charge density and weakens atomicity on which the algorithm

is based. Therefore, it is strongly preferred to use low-

temperature data. How well the effect of B can be removed

from the real data is beyond the scope of this paper but our

numerical tests show that an error of �3 AÊ 2 can be tolerated.

All ten example structures were successfully solved using

the charge ¯ipping algorithm. The solution of each structure

was attempted 100 times starting with different random phase

sets and running the algorithm for a maximum of 5000 itera-

tion cycles. The number of iterations leading to convergence

greatly varies, only their distribution characterizes the dif®-

culty of the problem. Solution statistics are compiled in Table

2 for the case when the observed data are complete and

noiseless.

It is informative to follow some basic quantities during the

iteration. Fig. 2 shows a typical run of example 1. The three

subplots are: the total charge, the traditional R factor and the

phase change. In all three quantities, a sudden decrease starts

at 210 iterations and ends after another 10 iterations. This

sharp drop is an unmistakable sign of convergence and its

width is independent whether it occurs after 10 or 10000

iterations. All curves show three different parts: an initial

transient, a long stagnation period before the convergence and

an equilibrium after. What really goes on in these periods is

discussed in the next section.

Once a solution is found, its quality must be evaluated. For

this we locate the atoms by 3� 3� 3 pixel peak picking and

compare their number, centroid position and integrated

weight to the original structure. The solutions are remarkably

complete, all atoms of the original structure can be found. As

we work in the space group P1, the structure is always shifted

relative to the original and for non-centrosymmetric structures

the solution is often the enantiomer. When we check a large

number of solutions, the shift vector is uniformly distributed in

Table 2
Solution statistics of the example structures; columns: � normalized by the
height of an oxygen peak, success rate, mean/minimum/maximum
number of iterations.

� Success Mean Min. Max.

1 0.080 0.99 338 55 2005
2 0.074 1.00 301 55 1650
3 0.080 1.00 90 30 205
4 0.098 1.00 101 15 230
5 0.111 1.00 143 70 300

6 0.074 0.95 1040 115 4220
7 0.080 1.00 106 35 345
8 0.080 1.00 268 40 1645
9 0.111 1.00 198 75 690

10 0.125 1.00 441 85 4115

Table 1
Example structures; columns: CSD code and original reference, space
group, number of non-hydrogen atoms and chemical formula per unit
cell.

Code and reference Space group N Unit-cell content

1 feryoq (a) P�1 172 2�C80N1O5

2 rawtoy (b) P�1 216 2�C88N4O16

3 ibeyap (c) P�1 220 2�C96N1O13

4 cotgib (d) P�1 244 4�C53Cu1O5P2

5 sisyey (e) P�1 326 2�C98Cl2Mn12N1O50

6 valino ( f ) P1 156 2�C54N6O18

7 pawveo (g) P1 164 2�C72N4O6

8 gofmod (h) P1 188 2�C77.5N4O12.5

9 qarpuu (i) P1 220 2�C105N4Pd1

10 qibbuy ( j) P1 240 1�C181Cl24N6O26P3

References: (a) Irngartinger et al. (1999); (b) Nomura et al. (2000); (c) Wang et al. (2001);
(d) Balogh-Hergovich et al. (1999); (e) Sun et al. (1998); ( f ) Karle (1975); (g) Pakhomova
et al. (1997); (h) Biradha et al. (1998); (i) Ishii et al. (2000); ( j) Lacour et al. (2000).



the unit cell. After the shift and enantiomer correction have

been applied, the coordinates of non-hydrogen atoms are

typically within 0.1 AÊ of the original structure and the inte-

grated weight of a carbon atom is between 4 and 6. This is

considered very good quality reconstruction, especially

without the use of a separate re®nement program.

For any chance of a real world application, it is important

how well the algorithm tolerates imperfect data. To check this,

we made extensive tests which we brie¯y summarize here. The

two most harmful factors are noise and missing data. Noise

was modelled by adding to each re¯ection uniformly distrib-

uted random errors proportional to Fobs�h�. Note that this is

worse than noise proportional to intensity. We checked a

range of noise levels up to 50%. In the whole range, the

recovery was still very good, although convergence slightly

slowed down. For modelling missing data, we replaced a

fraction of weak re¯ections by zeros, the range was again up to

50%. This led to a remarkable result; in all cases convergence

actually became faster. The number of necessary iterations

was reduced by a factor of 2±4, while the ®nal R factor

increased without an obvious degradation in the quality of the

reconstructed charge density. The above results are so

convincing that we can safely claim that the algorithm will

work for real data.

5. Mathematical notes on the algorithm

Without giving a formal proof of convergence, we reconsider

here some of the mathematical aspects of the iteration method

described previously.

Clearly, a prerequisite of any ab initio structure solution is

that, apart from translations and point-group transformations,

the Fourier moduli determine a unique density. Thus, we

suppose uniqueness and mention only one obvious condition

of it. The density should not be strictly positive, otherwise any

suf®ciently small change in the phases which respects Friedel's

law would lead to a different, non-negative, density.

Our method assumes that the density has extended regions

of zeros. If the density

�ideal�r� �
1

V

X
h

F�h� exp�ÿ2�ih � r� �2�

has a sea of zeros, then the value taken by the ®nite sum

��r� � 1

V

X
h�H

F�h� exp�ÿ2�ih � r� �3�

is small positive or negative near this sea of ideal zeros. The

discrete inverse Fourier transform provides a sampling of � at

the centres of pixels and not an average over the volume of

pixels. The oscillations around zero can be seen in the

sampling, and the threshold �> 0 under which the sign ¯ip is

made has to be chosen in such a way that these small oscil-

lations fall in the interval �ÿ�;���. Therefore, the optimal

choice of � depends on the function to be determined. We

demonstrated earlier that � can be chosen without an a priori

knowledge of � so that the algorithm converges, and for this

reason � should not be too small. Apart from the oscillations,

another fundamental reason to work with �> 0 is that for any

set of phases f'�h�g and a constant c large enoughP
0<h�H

Fobs�h� expfi�'�h� ÿ 2�h � r�g � c � 0:

This means that any set of phases f'�h�g is a ®xed point of the

iteration if � � 0 and F�0� is not prescribed (which is our case).

Since the input data are Fobs�h� � jF�h�j for 0 < h � H, the

target function cannot be �ideal but only the truncated density

�, including the total charge

F�0� � R �ideal dr � R � dr: �4�
Here integration is carried over the unit cell of volume V. By

reproducing �, the iteration will generate F�0�, although with a

limited precision. We shall return to this point at the end of the

section.

Given �> 0, we divide � into two parts, � � �1 � �2 with

�1�r� � ��r� if ��r� � �
0 otherwise

n
�5�

and
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Figure 2
A typical run of the charge ¯ipping algorithm leading to convergence.
From top to bottom: total charge, R factor and phase change as a function
of the iteration cycle. The total charge is normalized by its ideal ®nite
resolution value. The R factor and phase change are de®ned by equations
(17) and (18).
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�2�r� � ��r� if ��r�<�
0 otherwise.

n
�6�

The scheme of iteration has been given in equation (1). More

precisely, we do the following:

0th half-cycle

We choose '�0��h� for (the half of) h with 0 < h � H

randomly and independently according to the uniform distri-

bution in �0; 2��. Then,

F�0��h� � Fobs�h� exp�i'�0��h�� for 0 < h � H

0 for h � 0 and h > H

�
�7�

and by inverse FFT we compute ��0� determined in pixels

r � rj.

nth cycle (n � 1)

Given ��nÿ1�, we divide it into two parts,

��nÿ1� � ��nÿ1�
1 � ��nÿ1�

2 �8�

as in equations (5) and (6), and execute the sign ¯ip on

��nÿ1��rj�<� to obtain

g�n� � ��nÿ1�
1 ÿ ��nÿ1�

2 : �9�

The Fourier transform of g�n� provides G�n��h� for as many h as

the number of pixels in the unit cell. Then,

F �n��h� �
Fobs�h�G�n��h�=jG�n��h�j
� Fobs�h� exp�i'�n��h�� for 0 < h � H

G�n��0� for h � 0

0 for h > H

8><>: �10�

and through inverse FFT we ®nd the next approximation

��n��r� of the density in pixels r � rj.

The real-space transformation ��nÿ1� ! g�n� is:

(i) non-invertible, i.e. one cannot reproduce ��nÿ1� from g�n�;
(ii) norm-preservingP

j

g�n��rj�2 �
P

j

��nÿ1��rj�2; �11�

(iii) local in the sense that g�n��rj� depends only on ��nÿ1��rj�.
Together with (11), this implies jg�n��rj�j � j��nÿ1��rj�j. Its

most important characteristics is, however,

(iv) sign change in a broad region of the unit cell, ��nÿ1��rj�<�
occurs for the majority of pixels.

Locality in real space also means no charge displacement,

implying that the position of the density evolves freely. This

has consequences on the transformation we do in reciprocal

space. Since the real-space modi®cation makes no use of

symmetries, symmetry constraints on the phases of the Fourier

components are not helpful or counter-productive.

As we see from equation (10), the transformation

G�n� ! F�n� in reciprocal space is also local and non-invertible.

However, while the map F�nÿ1� ! G�n� is norm-preserving

(because such are ��nÿ1� ! g�n� and the steps FFT/IFFT

together), G�n� ! F�n� does not preserve the norm and

therefore

F�n��0�2 � P
0<h�H

Fobs�h�2 �
P

h

jF�n��h�j2

6�P
h

jG�n��h�j2

�P
h

jF�nÿ1��h�j2

� F�nÿ1��0�2 � P
0<h�H

Fobs�h�2 �12�

as long as convergence has not been attained. As a matter of

fact, although convergence is most noticeable on the abrupt

drop of the R factor/total charge/phase change, see Fig. 2 and

the discussion below, its precise meaning is that in equation

(12) equality is reached. Not surprisingly, this occurs when the

total charge F�n��0� reaches its limit. Note, however, that there

will never be a pointwise equality between the jFj and jGj
functions, because the step from g�n� to G�n� always creates

nonzero Fourier components for h>H, while F�n��h� � 0 for

h>H. This means that, when convergence sets in,P
0<h�H

jG�n��h�j2 < P
0<h�H

jF�n��h�j2 � P
0<h�H

Fobs�h�2 �13�

and therefore

jG�n��h�j< jF�n��h�j � Fobs�h� �14�
for the largest structure factors, dominating the sum of the

squares.

We emphasize that in the present algorithm convergence

means reaching a limit cycle and not a ®xed point, in the sense

that jG�n��h�j becomes independent of n, but '�n��h� alternates

between two values according to the parity of n. In Fig. 3, we

plotted the evolution of G�n��h� in the complex plane for a few

strong re¯ections. This is more spectacular than the evolution

of F�n��h� which stays on the circle of radius Fobs�h�. Equation

(8) implies

F�nÿ1� � F
�nÿ1�
1 � F

�nÿ1�
2 ; �15�

where F
�nÿ1�
i is the Fourier transform of ��nÿ1�

i . Thus,

G�n� � F
�nÿ1�
1 ÿ F

�nÿ1�
2 : �16�

According to (10), F�n� is a functional of F
�nÿ1�
1 ÿ F

�nÿ1�
2 , but

not of F�nÿ1�, which is not uniquely determined by

F
�nÿ1�
1 ÿ F

�nÿ1�
2 . When convergence sets in, F

�n�
1 �h� becomes

nearly independent of n, while F
�n�
2 �h� alternates between two

nearly collinear vectors in the complex plane which are nearly

orthogonal to their respective F
�n�
1 �h�. That collinearity and

orthogonality are imperfect is due to (14) and (16). As a result,

we can see an even±odd alternation of G�n��h� inside the circle

of radius Fobs�h�, as shown in Fig. 4.

If the number of independent phases is N, the algorithm has

to ®nd one of the good phase sets in the N-dimensional real

space RN, where good means reproducing a translate of �1.

Any good set is represented by a point in RN , and these points

form a three-dimensional manifold S having one or several

connected components. If ��r� 6� ��ÿr� then their respective

translates generate different connected sets. � � f'�h�g and

	 � f �h�g are in the same component if they are connected

by a space translation



 �h� � '�h� � 2�h � a
for some a 2 R3. Phase retrieval is done in the cube

C � �0; 2��N , and hence parts of S outside this cube have to be

shifted back into it by subtracting integer multiples of 2�.

Then even the connected components of S fall into three-

dimensional `®laments' starting and ending on the surface of

the cube, and our algorithm has to converge to a point of one

of the ®laments. Although S is in®nite, when shifted back into

C, the ®laments do not ®ll densely the cube, otherwise any

choice of the phases would do. More than circumstantial

evidence of this fact can be obtained by noting that for any

four vectors h1; . . . ; h4 and any a 2 R3 the numbers hi � a are

rationally dependent, i.e.
P4

i�1 mihi � a � 0 for suitably chosen

integers mi. Also, there is a large number of shift-invariant

quantities formed by the coordinates of points of S, namely, if

h0 � mh for some integer m, then

'�h0� ÿm'�h�
is shift-invariant. Thus, the set of good points is not dense in C,

but still it is a three-dimensional manifold which is much easier

to hit than to localize a single point. This is the major

advantage when the origin of the structure is not ®xed.

Having no a priori information about the position of the

®laments, a random initial set of phases seems to be a good

choice to start with. This is even more true because, if it starts

with a good phase set, the iteration leaves the neighbourhood

of this point and returns to another one after convergence.

Indeed, starting with the good phases implies ��0� �
�ÿ �1=V� R � dr. Then in real space, instead of shifting this

function upwards, we start to ¯ip the values below � and the

iteration leads farther away from � before it approaches again

a translate of it. That it does this is due to property (iv) of the

real-space transformation, which invokes a wide exploration

of C. We note that there is no attraction along the ®laments

because the algorithm makes no preference in the position of

the sample. It takes a while to reach the basin of attraction of

one of the ®laments, showing that their complement in C has

to be a large set of a complicated structure, similar to a

`strange repellent' of a chaotic system. However, in the

neighbourhood of a solution, convergence sets in like an

avalanche and it is complete after a few steps of iteration. The

iteration process is chaotic, in the usual sense of a sensitive

dependence on initial conditions, which are the starting phases

in our case. An obvious sign is that the number of iteration

cycles leading to convergence varies wildly with the slightest

change of a given random phase set. Chaotic behaviour comes

from two sources. The topological reason is the ®lamentation

of the set of points to be attained in the very high dimensional

cube of phases. The algorithmic reason is that successive

points to be visited in C are decided by charge ¯ipping in real

space. Although this is done in a deterministic way, during the

long stagnation period it appears very much like random

jumps in the space of phases.

It is instructive to follow the evolution of the total charge

F�n��0� plotted in Fig. 2(a). It starts with zero, in the ®rst step of

the iteration it jumps to a high positive value, which is

followed by a rapid decay to an intermediate value, a long

stagnation, and a second abrupt drop to the ®nal number. Its

evolution follows rather closely that of the R factor,

R�n� �
P

0<h�H jjG�n��h�j ÿ Fobs�h�jP
0<h�H Fobs�h�

�17�

shown in Fig. 2(b). The distance
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Figure 3
The evolution of the structure-factor amplitude G�n��h� in the complex
plane for a few strong re¯ections. In each case, it alternates between two
values after convergence, showing that the solution is a limit cycle.

Figure 4
The evolution of a selected structure-factor amplitude G�n��h� in the
complex plane. Arrows explain one cycle of iteration from G�n� to G�n�1�

through F�n� = F
�n�
1 � F

�n�
2 . The radius of the circle is Fobs�h�.
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d���n�2�;��n�� �
P

0<h�H Fobs�h�j�'�n�2��h� ÿ '�n��h���mod 2��jP
0<h�H Fobs�h�

�18�
exhibits a similar behaviour (Fig. 2c). We recall that the R

factor is used only for monitoring the convergence, the fact

that it does not tend to zero is due to (14), and has no bearing

on the success of the iteration.

The initial overshooting of F�1��0� for most of the starting

phase sets can be understood as follows. Since

F�0��0� � 0

and

F
�0�
1 �0� �

R
��0�1 dr � ÿ R ��0�2 dr > 0

is the charge carried by the pixels in which ��0��rj� > �, we have

G�1��0� � F�1��0� � 2F
�0�
1 �0�:

No similar charge doubling occurs in the subsequent steps,

because typically R
��n�1 dr� ÿ R ��n�2 dr

for n > 0. For the example in Fig. 2, the actual limit reached by

G�n��0� is about 30% lower than the true value of F�0�. In

principle, a smaller � could yield the correct value, but in

practice we would not obtain convergence with a smaller �.
After convergence sets in, � can be decreased and the iteration

continued without destroying the result. A new limit cycle will

be attained with suppressed oscillations and a higher total

charge. This can go on down to � � 0, where the sea of zeros

will be lost and the total charge will become too large.

6. Conclusions

In this paper, we presented an ab initio structure solution

method termed charge ¯ipping. It uses high-resolution data

and alternates between real and reciprocal space in the

manner of Fourier recycling. The real-space modi®cation

simply changes the sign of the charge density below a

threshold, which is the only parameter of the algorithm. In

reciprocal space, observed moduli are constrained using the

unweighted Fobs map, while the total charge is allowed to

change freely. The iteration process is unconditional. We

emphasize that the traditional R factor is used only for

monitoring convergence and not as the objective function of

an optimization approach.

We tested the algorithm using 0.8 AÊ resolution synthetic

data for a wide range of centrosymmetric and non-centro-

symmetric structures taken from the Cambridge Structural

Database. The size of our examples is somewhere at the upper

limit of small-molecule structures in space groups P�1 and P1.

All structures were handled in P1 neglecting any symmetry

constraints. While the present work focuses on perfect

synthetic data, we also discussed brie¯y how well the algor-

ithm tolerates imperfect data. For the examples presented, we

followed single runs, analysed solution statistics of multiple

runs and checked the quality of reconstruction. All structures

were solved with a high success rate, and all atoms were found

without the use of a separate re®nement program.

Finally, mathematical aspects of the iteration process were

considered in detail. We clari®ed the most important proper-

ties of real- and reciprocal-space transformations, discussed

the relevance of ®nite resolution and the choice of �. By

following the evolution of structure factors, we also showed

that the iteration process is chaotic and the solution is not a

®xed point but a limit cycle.

The most important characteristic of the algorithm is its

amazing simplicity. This is a big advantage for exact mathe-

matical treatment; in the future, we shall attempt to give a

formal proof of convergence. When it comes to ef®ciency, such

a simple method is likely to lag behind today's best programs.

As long as symmetry is not helpful, charge ¯ipping offers only

an interesting alternative in the low-symmetry space groups.

Nevertheless, we encourage everyone to try it, it is a few lines

of code plugged into an existing program, and only a few

hundred lines as a stand-alone application. We shall also

continue our work to check the power of the algorithm on real

data and to make a fair comparison of success ratios with other

methods. We have well de®ned plans to improve the algorithm

but anticipate that the original simplicity will be lost in

exchange for higher ef®ciency.
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